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ABSTRACT

POWELL, BRIAN PAUL. An Advanced Algorithm for Construction of Integral Transport
Matrix Method Operators Using Accumulation of Single Cell Coupling Factors. (Under the
direction of Yousry Y. Azmy.)

The Integral Transport Matrix Method (ITMM) has been shown to be an effective method

for solving the neutron transport equation in large domains on massively parallel architectures.

In the limit of very large number of processors, the speed of the algorithm, and its suitability for

unstructured meshes, i.e. other than an ordered Cartesian grid, is limited by the construction

of four matrix operators required for obtaining the solution in each sub-domain. The existing

algorithm used for construction of these matrix operators, termed the differential mesh sweep,

is computationally expensive and was developed for a structured grid. This work proposes the

use of a new algorithm for construction of these operators based on the construction of a single,

fundamental matrix representing the transport of a particle along every possible path through-

out the sub-domain mesh. Each of the operators is constructed by multiplying an element of

this fundamental matrix by two factors dependent only upon the operator being constructed

and on properties of the emitting and incident cells. The ITMM matrix operator construction

time for the new algorithm is demonstrated to be shorter than the existing algorithm in all

tested cases with both isotropic and anisotropic scattering considered. While also being a more

efficient algorithm on a structured Cartesian grid, the new algorithm is promising in its geo-

metric robustness and potential for being applied to an unstructured mesh, with the ultimate

goal of application to an unstructured tetrahedral mesh on a massively parallel architecture.
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Chapter 1

Introduction

The neutron transport equation governs neutron movement through a medium over time at

various energies and directions. The neutron transport equation is [1]

1

v

∂

∂t
ψ(~r, Ω̂, E, t) + Ω̂ · ~5ψ(~r, Ω̂, E, t) + σ(~r,E)ψ(~r, Ω̂, E, t) = σs(~r,E)φ(~r,E, t) + q(~r, Ω̂, E, t) ,

(1.1)

where v is the neutron speed, ψ(~r, Ω̂, E, t) is the neutron angular flux at position ~r, direction

of travel Ω̂ , energy E, and time t, σ(~r,E) is the total neutron cross section at position ~r and

energy E, σs(~r,E) is the neutron scattering cross section at position ~r and energy E, φ(~r,E, t)

is the neutron scalar flux at position ~r, energy E, and time t, and q(~r, Ω̂, E, t) is the fixed

neutron source at position ~r, direction of travel Ω̂ , energy E, and time t.

For the purposes of this work, the neutron transport equation is considered to be time-independent.

The removal of the time variable results in the form of the transport equation considered here,

Ω̂ · ~5ψ(~r, Ω̂, E) + σ(~r,E)ψ(~r, Ω̂, E) = σs(~r,E)φ(~r,E) + q(~r, Ω̂, E) . (1.2)

This form of the transport equation must be discretized in space, angle, and energy to allow for

a numerical solution. The Integral Transport Matrix Method (ITMM) for solving the neutron

transport equation, which is the method examined in detail in this work, makes use of each of

these discretizations.

In the field of computational neutron transport theory, advanced methods for solving the neu-

tron transport equation are needed for solving larger problems on a greater number of proces-

sors. Solution algorithms suitable for massively parallel architectures must continue to achieve

speedup as the number of processors is increased. One such method that has shown promise in

this area is the ITMM.

This work focuses on the basic premise of the ITMM, which is the construction of four matrix

1
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operators used iteratively in two equations to converge to the solution of the neutron trans-

port equation. This work is motivated by the desire to implement the ITMM on geometries for

complicated engineering using unstructured grids. The rise of unstructured tetrahedral mesh

transport methods and codes as a means to a more accurate representation of geometric con-

figurations typical of radiation transport problems requires adaptations of the ITMM for the

application of this method to such a mesh.

A complete algorithm for the construction of the four matrix operators on a Cartesian grid has

already been developed. This algorithm, although effective for constructing the matrix opera-

tors on a Cartesian grid, is computationally expensive and requires orderly mesh structure to

perform well. As such, the need for a method of constructing the ITMM matrix operators that

is both more computationally efficient and geometrically robust is evident.

The method presented in this work, although confined to three-dimensional Cartesian meshes

at this stage, is promising in that it has demonstrated significantly faster matrix operator

construction times and has the potential to be applied with relative ease to an unstructured

tetrahedral mesh. This algorithm derives its efficiency from the fact that all transport of par-

ticles through a mesh, whether originating from a distributed source or an incoming angular

flux, follows the same paths from the emergent face of a cell to the incident face of a cell. This

principle allows for the creation of a fundamental matrix for face-to-face transport, off of which

each of the matrix operators required for the ITMM can be constructed. It will therefore be

termed the Fundamental Matrix Method (FMM).

In the following chapter, relevant literature will be reviewed. This will be followed by a deriva-

tion of the ITMM. The FMM will then be derived, along with a complete example of the

construction of the four ITMM operators for a 3 x 3 cell system in two dimensions. A per-

formance model for the FMM algorithm will then be described, followed by a comparison of

matrix operator construction time results for several different scenarios for both the existing

algorithm and the FMM. This will be followed by a comparison of the FMM timing results to

the algorithm performance model. Finally, conclusions will be presented along with thoughts

on future work to be completed through the use of the FMM algorithm.

2
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Chapter 2

Review of Literature

The Integral Transport Matrix Method (ITMM) of solving the neutron transport equation on

multiprocessing platforms is a spatial domain decomposition method and is therefore ideally ap-

plied to a large domain in a massively parallel computational environment. Given that this work

focuses on the construction of the matrix operators needed for the ITMM and not computation

of the solution, either in serial or parallel, the review of literature will focus on the development

of the use of matrix operators in solving the neutron transport equation. The ITMM makes

use of angular, spatial, and energy discretization, so a brief review of these methods will be

examined as well.

2.1 Discretization of the Transport Equation

Energy discretization methods, generally referred to as multigroup methods, allow for solv-

ing the transport equation for neutrons in a specific energy range. This is accomplished by

integrating equation 1.2 over all energies, resulting in [1]

Ω̂ · ~5ψg(~r, Ω̂) + σg(~r)ψg(~r, Ω̂) = σs,g(~r)φg(~r) + qg(~r, Ω̂) , (2.1)

where the subscript g indicates a specific energy group. Lewis and Miller discuss multigroup

methods in detail [1]. Here, it is sufficient to note that the methods derived in this work solve

the transport equation for a single energy group, hence the subscript g will be suppressed.

Angular discretization, as accomplished by the method of discrete ordinates, is a key component

of this work. Discretizing equation 2.1 by angle yields [1]

(µn
∂

∂x
+ ηn

∂

∂y
+ ξn

∂

∂z
)ψn(~r) + σ(~r)ψn(~r) = σs(~r)φ(~r) + q(~r) , (2.2)

3
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where µ is the angular cosine in the x-direction, η is the angular cosine in the y-direction, ξ is

the angular cosine in the z-direction, and the subscript n indicates a discrete angle. The discrete

ordinates method has been used in production-level radiation transport codes since the 1960s,

with much of the early development done by Carlson and Lathrop [2]. Significant advances in

discrete ordinates methodology since that time have been described by Larsen and Morel [3].

Lewis and Miller [1] provide a thorough description of a discrete ordinates solution algorithm

in one, two, and three dimensions using the diamond difference spatial differencing method. By

solving the transport equation for the angular flux at several individual angles in quadrature

discrete ordinates allows for an accurate approximation to the solution of the transport equa-

tion. However, discrete ordinates algorithms generally require a repetitive and computationally

expensive mesh sweep in order to converge to the solution. In the ITMM formulation, however,

only a single mesh sweep was required in single sub-domain, with convergence achieved by it-

erating on the incoming angular flux to each sub-domain [4].

Spatial discretization, also known as spatial differencing, allows for solving the transport equa-

tion in a finite domain by separating that domain into multiple nodes, or cells, in each of which

the flux solution can be found and related to neighboring cells. Considering equation 2.2, spatial

central differencing of the partial derivatives comprising the streaming operator yields [1]

µn
4xi

(ψn,i+1/2,j,k − ψn,i−1/2,j,k) +
ηn
4yj

(ψn,i,j+1/2,k − ψn,i,j−1/2,k)+

ξn
4zk

(ψn,i,j,k+1/2 − ψn,i,j,k−1/2) + σi,j,kψn,i,j,k = σs,i,j,kφi,j,k + qi,j,k . (2.3)

Where i, j, k are the indices of the given cell in the x−, y−, z− direction, respectively. The

subscript i−1/2, j, k indicates the left x-face of cell i, j, k and the subscript i+1/2, j, k indicates

the right x-face of cell i, j, k, with analogous meanings in the y and z directions.

Larsen and Morel [3] describe in detail three methods of spatial discretization used in solving

the transport equation: The characteristic method, the linear discontinuous method, and nodal

methods. Any one of these methods form what is called the auxiliary equation, which relates

the incoming and outgoing angular flux in a cell to the angular flux at the cell center. In the

ITMM formulation used in this work, the diamond difference equation is the auxiliary equation

of choice. The diamond difference method is the approximation of the angular flux at the cell

center by

ψn,i,j,k =
1

2
(ψn,i+1/2,j,k + ψn,i−1/2,j,k) (2.4)

and analogously for the y and z directions. Lewis and Miller [1] describe the diamond difference

method in detail, and its application to this work is described in the next chapter.

4
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2.2 Parallel Domain Decomposition of the Transport Equation

The benefits of the ITMM are realized only on multiprocessing platforms. The method is not

competitive in serial mode but is highly competitive in parallel [4] and therefore the application

of parallel domain decomposition must be discussed. Domain decomposition can accomplished

through three distinct means: Energy domain decomposition, angular domain decomposition,

and (as in the ITMM formulation) spatial domain decomposition. A hybrid decomposition

combining any of these three methods is also possible. Developments in parallel domain de-

composition are also much more recent than discretization methods due to the availability of

parallel computing resources that became widespread starting in the 1980s.

Energy domain decomposition involves solving the transport equation in a sub-domain for

different energy groups, each on a separate processor. The obvious advantage of domain de-

composition by energy is the ability to rapidly solve transport problems involving a large span

of energies. As such, energy domain decomposition is particularly applicable to nuclear reactor

core simulation, where neutrons are constantly changing energy through collisions and neutrons

at varying energies have important properties (e.g. thermal neutrons causing fission). Much of

the early work in energy domain decomposition was completed by Weinke and Hiromoto [5,6,7].

Despite its applications, energy domain decomposition is the least used of domain decomposi-

tions due to the possibility that the energy groups could be solved out of order, increasing the

iterative cost of convergence with increasing number of participating processors[8,9].

Angular domain decomposition is based on the previously described discrete ordinates angular

discretization method, the main difference being that the transport equation can be solved for

each ordinate on a separate processor, assuming vacuum boundary conditions on all external

faces of the problem domain. The resulting angular fluxes are then summed in quadrature on

the base processor or in parallel to achieve a solution for the scalar flux, or, if desired, angular

moments of the flux. While advantageous in that, in Cartesian geometry, the ordinates do not

need to be solved in any particular order, the disadvantage of angular domain decomposition is

that the decomposition is limited to the number of ordinates, which generally will not exceed

several hundred, to a few thousand at the very most. Therefore, this limitation does not allow

for massively parallel implementations of angular domain decomposition schemes. Another dis-

advantage of angular domain decomposition is that the full spatial domain must be replicated

on all processors (e.g. large flux arrays), which requires significant memory storage. Fischer and

Azmy [8] detailed a performance model for both angular and spatial domain decomposition

methods in order to determine which method was better applied to a given problem. They

concluded that, for a small computational cluster, it is more efficient to discretize by angle and

that the opposite is true as the number of processors is increased. Azmy [9] also described the

development of angular domain decomposition methods in detail.

5
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Spatial domain decomposition is the domain decomposition method used by the ITMM. By

separating a domain into multiple smaller sub-domains, each solved on a separate processor,

the transport equation can be solved faster. A disadvantage of spatial domain decomposition is

the necessity of a sub-domain to have the solution to the outgoing angular flux in neighboring

domains. Any disadvantage that this causes, however, is outweighed by the ability to decompose

the domain into a large number of smaller sub-domains to match the number of available pro-

cessors, assuming (as typical for large applications worthy of massively parallel solution) that

the spatial discretization yields significantly more computational cells than available processors

for execution.

Early work in spatial domain decomposition was completed by Yavuz and Larsen [10], who first

attempted a spatial domain decomposition algorithm on one-dimensional and two-dimensional

domains. Yavuz and Larsen [11] also developed the Alternating Direction Transport Sweep

(ADTS), which allowed for adjacent sub-domains to receive updated values for the incoming

angular flux. Although their method was able to achieve parallel speedup, it was not designed

for massively parallel architectures and is therefore not competitive with the ITMM. A detailed

account of the development of early spatial domain decomposition methods is provided by Azmy

[9].

It is important to emphasize one spatial domain decomposition method: The KBA (Koch,

Baker, Alcouffe) algorithm [12,13], also known as the wavefront algorithm, is a method of spa-

tial domain decomposition that is used by the current state-of-the-art neutron transport codes

[4]. The KBA algorithm involves the conduct of a sequential mesh sweep on a diagonal wave-

front through the given domain, where the transport equation is solved on a single processor

for each sub-domain and the outgoing angular fluxes are used as incoming angular fluxes in

the adjacent sub-domain. It has been shown [13] that the KBA algorithm is effective on mas-

sively parallel architectures. The shortcoming of the KBA algorithm, however, is that, due to

the sequential nature of the parallel mesh sweep, some processors must remain dormant. The

ITMM solution algorithm works simultaneously across the entire domain, minimizing unused

processors and therefore is competitive with KBA as a massively parallel spatial domain decom-

position method [4]. An important difference to note between the KBA and ITMM algorithms

is that KBA is synchronous and ITMM is asynchronous, resulting in the disadvantage of KBA,

processor idleness, being essentially traded for increasing iterations in the ITMM.

2.3 Response Matrix Methods

The ITMM, at its foundation, has close similarity to response matrix methods in that it makes

use of four distinct matrix operators (described in the next chapter) which are multiplied by

6
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a known quantity (e.g., incoming angular flux at the boundaries) and provide a response (e.g.,

outgoing flux at the boundaries). Each ITMM matrix operator is then essentially a response

matrix.

Response matrix methods (RMM) have been developed for use in solving the transport equation,

but with widely varied techniques [1]. A thorough review and derivation of the RMM in addition

to applications in nuclear engineering for both transport theory and the diffusion approximation

were provided by Lindahl and Weiss in 1981 [14]. Lindahl and Weiss asserted that the RMM

provides the solution of a transport problem on a large domain by consolidating solutions

of smaller sub-domains. They also state that the advantageous characteristic of the RMM is

the ability to consider each sub-domain as a separate problem. This general introduction to the

RMM is remarkably similar to the basis of the ITMM, which breaks a larger domain into smaller

sub-domains on a multiprocessing platform, allowing for the consideration of each sub-domain

as a separate problem, where the global solution is obtained by iterating on the angular flux at

the boundaries of the sub-domains. Lindahl and Weiss consider each sub-domain, or node, as

they identify it, to be characterized by a response kernel which is, in essence, a probability of

particle interaction inside the node. The response kernel is then more concretely identified as

a response matrix which, when multiplied by an incoming angular flux, produces an outgoing

angular flux. The definition of the response matrix is also expanded to include the response of a

sub-domain over several nodes rather than just a single node. Lindahl and Weiss go on to define

four distinct response matrices which relate in the incoming current, outgoing current, scalar

flux, and fixed source in the sub-domain. These matrices are used in two equations iterating on

the incoming current to provide a global solution to the transport equation.

The RMM of Lindahl and Weiss bears significant similarity to the ITMM. Both methods,

generally, make use of multiple cell, or node, sub-domains and the four response matrices using

the iterative solution method described in the previous paragraph. The differences lie in the

specifics of the method. The RMM uses particle currents, whereas the ITMM is able to make

use of angular flux via the discrete ordinates method and spatial differencing. The response

matrices are also constructed in a very different manner. Lindahl and Weiss use block matrices

defining the response of each node individually to construct the larger response matrix. This

construction method leads to computational storage inefficiency by requiring the storage of more

zeros than meaningful data. Contrasting this approach, the ITMM requires the construction

of differential matrix operators and, through the use of discrete ordinates, allows for operator

elements to be grouped efficiently and avoids unnecessary storage.

Although response matrix methods exist for several techniques including Monte Carlo, collision

probabilities, and finite elements [1], it is the use of discrete ordinates that is the basis for the

ITMM. A discrete ordinates formulation of the response matrix method was developed in 1992

7
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by Hanebutte and Lewis [15], who proposed using a response matrix algorithm to iteratively

solve the transport equation. The same two-equation iteration technique used by Lindahl and

Weiss [14] is used to iterate on the incoming angular flux. The main difference between the

two techniques is that Hanebutte and Lewis iterate on the incoming angular flux as opposed to

the incoming current used by Lindahl and Weiss. The discrete ordinates method allows for this

difference. The method of Hanebutte and Lewis was also limited to the response of a single-

cell sub-domain and was therefore computationally expensive in an iterative sense. The ITMM

then, is an evolution of the work of both Hanebutte and Lewis and Lindahl and Weiss.

2.4 The Integral Transport Matrix Method

The response matrix algorithm of Hanebutte and Lewis [15] was not further developed until

1997 by Azmy [16], who first proposed a method for using full-domain operators, rather than

single cell operators, to allow for a solution to the transport equation without the need for

repetitive mesh sweeps that continue to dominate deterministic method solution algorithms.

Azmy also described the algorithm required to construct the matrix operator that relates the

scalar flux spatial moments in all cells to the fixed source spatial moments. This matrix operator

is identified as A in the equation

φv = A(σsφp + S) , (2.5)

where φv is the scalar flux in the current iteration, φp is the scalar flux in the previous iteration,

σs is the scattering cross section operator (basically a diagonal matrix whose elements are the

cell by cell isotropic scattering cross section), and S is the fixed neutron source. Azmy identified

that A is essentially an iterative map of the scalar flux. The algorithm to construct A was based

on a mesh sweep using differential relations between the angular flux and scalar flux spatial

moments to create the matrix identified as the iteration Jacobian. An assumption critical to

the development of the ITMM made in this work is that the iterations defined in equation 2.5

are convergent yielding a converged scalar flux solution, φ∞, giving

φ∞ = (I − σsA)−1AS . (2.6)

Through this assumption, previous and current iterates of the cell scalar flux converge to the

same value, eliminating a variable and allowing for a solution of the converged cell scalar flux

without iteration based on the matrix operator A and the fixed neutron source S. Azmy’s work

is the first thorough description of an algorithm required to create a matrix operator in the

ITMM, A. However, it is limited to the case of vacuum boundary conditions and also does not

consider outgoing angular flux from the sub-domain.

8
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Azmy continued to evolve the method in 1999 [17] by describing a matrix operator B such that

B = (I − σsA) . (2.7)

Azmy provides a thorough description of the algorithm required to create B, including the

specific values of diagonal and off-diagonal elements of the matrix and also examines precondi-

tioning methods to allow for faster convergence. Although he further developed the algorithm

for matrix operator B in this work, he continued to use only vacuum boundary conditions in

his calculations. Rosa, Azmy, and Morel expanded this work in 2009 [18], examining spectral

properties of A and B and further developing the algorithm for the construction of these op-

erators on configurations with vacuum boundary conditions. Rosa et al. identified B as the

integral transport matrix.

Zerr provided major developments in the ITMM in 2011 [4] by expanding the method to in-

clude non-vacuum incoming and outgoing angular flux at the boundaries of the sub-domain. In

doing so, he created four matrix operators Jφ, Jψ, Kφ, and Kψ, with Jφ related to Azmy’s

previously defined operator as

Jφ = AC , (2.8)

where C is the scattering-ratio matrix (a diagonal matrix whose elements are the cell by cell

scattering ratios). The use of each of these operators will be described in the following chapter.

Most importantly to this work, Zerr describes the construction algorithm, the Differential Mesh

Sweep (DMS), used to create each of the four matrix operators of the ITMM that are necessary

to account for non-trivial incoming angular flux. Zerr also developed a code for parallel imple-

mentation of this algorithm in constructing the operators and iteratively solving the transport

equation across sub-domains. The DMS matrix operator construction algorithm is the moti-

vation of this work in that it is desirable, based on the parallel performance demonstrated by

Zerr, for the ITMM to be applied to other geometries. A more geometrically robust and less

computationally expensive algorithm for the construction of the four matrix operators would

be ideal in this application.

9
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Chapter 3

The Integral Transport Matrix

Method

The starting point of the ITMM is the neutron balance equation for a single cell in three

dimensions, which, considering only isotropic scattering, is [1]

εxn,i,j,kψn,iout,j,k + εyn,i,j,kψn,i,jout,k + εzn,i,j,kψn,i,j,kout + ψn,i,j,k

= ci,j,kφi,j,k + σ−1t,i,j,kqi,j,k + εxn,i,j,kψn,iin,j,k + εyn,i,j,kψn,i,jin,k + εzn,i,j,kψn,i,j,kin (3.1)

where,

εxn,i,j,k =
|µn|

σt,i,j,k∆xi
,AFyz. (3.2)

AFyz stands for “analogously for y and z”, and, by the discrete ordinates approximation with

quadrature weights wn, the scalar flux (φ) is related to the angular fluxes (ψ) by the quadrature

sum

φi,j,k =

D∑
n=1

wnψn,i,j,k, (3.3)

where D is the total number of angles. In the above equations, µn is the angular cosine with

respect to the x-axis of the direction of particle travel along the nth discrete ordinate. σt,i,j,k is

the macroscopic total interaction cross section of the material in cell i, j, k. ∆xi is the width of

the cell in the x direction. ci,j,k is the scattering ratio,
σs,i,j,k
σt,i,j,k

, of the material in cell i, j, k , where

σs,i,j,k is the macroscopic scattering cross section in the same cell. qi,j,k is the distributed source

in cell i, j, k. ψn,iout,j,k is the angular flux along the nth discrete ordinate leaving cell i, j, k out of

the x = constant face, with analogous definitions for angular flux leaving at the y = constant

and z = constant faces. ψn,iin,j,k is the angular flux traveling along the nth discrete ordinate

entering cell i, j, k in the x = constant face, with analogous definitions for angular flux entering
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at the y = constant and z = constant faces. Finally, ψn,i,j,k is the cell-centered angular flux in

cell i, j, k of neutrons traveling along the nth discrete ordinate.

The diamond difference relation in all three dimensions is used to establish a closed matrix

system of equations for the unknown fluxes on the left hand side of equation 3.1 [1],

ψn,i,j,k =
1

2
(ψn,iin,j,k + ψn,iout,j,k),AFyz, (3.4)

resulting in
1 εzn,i,j,k εyn,i,j,k εxn,i,j,k
1 −0.5 0 0

1 0 −0.5 0

1 0 0 −0.5



ψn,i,j,k

ψn,i,j,kout

ψn,i,jout,k

ψn,iout,j,k

 =


1 εzn,i,j,k εyn,i,j,k εxn,i,j,k
0 0.5 0 0

0 0 0.5 0

0 0 0 0.5



ci,j,kφ

p
i,j,k + σ−1t,i,j,kqi,j,k

ψn,i,j,kin
ψn,i,jin,k

ψn,iin,j,k

 . (3.5)

Left multiplying both sides of equation 3.5 by the inverted coefficient matrix from the left

hand side yields 
ψn,i,j,k

ψn,i,j,kout

ψn,i,jout,k

ψn,iout,j,k

 = Γn


ci,j,kφ

p
i,j,k + σ−1t,i,j,kqi,j,k

ψn,i,j,kin
ψn,i,jin,k

ψn,iin,j,k

 (3.6)

where

Γn =


jφ kφ,z kφ,y kφ,x

jψ,z kψ,z→z kψ,y→z kψ,x→z

jψ,y kψ,z→y kψ,y→y kψ,x→y

jψ,x kψ,z→x kψ,y→x kψ,x→x

 (3.7)

The Γ matrix is then a set of coupling factors (named here according to their function,

which will be clarified later) between the distributed (fixed and scattering) source, incoming

angular fluxes, and outgoing angular fluxes. Alternative spatial discretization methods corre-

spond to different auxiliary relations, equation 3.4, that yield the same relation, equation 3.5,

with different Γn elements.
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All of the previous equations provide the relationships between the incoming and outgoing

angular flux and the scalar flux for only a single cell. When considering a multi-cell sub-domain,

the relationship between the cells is simply an extension of

ψn,i+1in,j,k = ψn,iout,j,k,AFyz (3.8)

Using this relation to extend equation 3.6 to a global system with vacuum boundary condi-

tions, the single cell values of φ and q need to be extended to the vectors φ and q containing

the values of the scalar flux and fixed source, respectively, in each cell. In a source iteration

scheme with φp as the previous iterate of the scalar flux and φv as the current iterate of the

scalar flux using equations 3.6 and 3.3, the system reduces to [4]

φv = A(Cφp + Σ−1
t q) , (3.9)

where C is the scattering ratio diagonal matrix and Σ−1
t is the inverse total cross section

diagonal matrix. A is then a coefficient matrix constructed from elements of Γ which relates the

previous scalar flux iterate to the new scalar flux iterate. Azmy [16] defines A as an iterative map

of the scalar flux. Partially differentiating equation 3.9 with respect to φp yields the iteration

Jacobian Matrix,

∂φv

∂φp
= AC (3.10)

AC was denoted by Zerr [4] as Jφ.

To factor Jφ instead of A from equation 3.9, the second term needs to be altered to

φv = A(Cφp + Σ−1
t ΣsΣ

−1
s q) (3.11)

Substituting

C = Σ−1
t Σs (3.12)

yields

φv = AC(φp + Σ−1
s q) (3.13)

Then, substituting Jφ for AC,

φv = Jφ(φp + Σ−1
s q) (3.14)

The converged scalar flux solution will occur when
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φv = φp = φ∞ (3.15)

Substituting this relation into equation 3.14 yields

φ∞ = (I − Jφ)−1JφΣ−1
s q (3.16)

Removing the constraints of vacuum boundary conditions, as is necessary to apply the

ITMM to a generic sub-domain, requires that the effect of the incoming angular flux on the

scalar flux within each cell of the sub-domain be accounted for. To that end, another term is

added to equation 3.14, yielding [4]

φv = Jφ(φp + Σ−1
s q) +Kφψin (3.17)

where ψin is a vector containing all incoming angular fluxes to the sub-domain and Kφ is

a matrix operator constructed from the elements of Γ which defines the effect of the incoming

angular flux on the scalar flux in each cell of the sub-domain. The dimension of ψin is then

the number of faces comprising the exterior of the sub-domain multiplied by the number of

incoming ordinates to each surface. Kφ has the same number of columns as the dimension of

ψin and the number of rows is equal to the number of cells in the sub-domain. The construction

of Kφ will be described in the next section.

By the same logic that achieved equation 3.16, the converged scalar flux solution with

incoming angular flux at the boundaries is then [4]

φ∞ = (I − Jφ)−1JφΣ−1
s q + (I − Jφ)−1Kφψ

∞
in , (3.18)

where ψ∞in is a vector containing all converged incoming angular fluxes to the sub-domain.

Both the effect of a fixed source (Jφ) and of an incoming angular flux (Kφ) on the scalar flux

in each cell in the sub-domain have now been accounted for. The next consideration, therefore,

is the calculation of the outgoing angular flux from a sub-domain consisting of two components:

Upon convergence, the outgoing angular flux satisfies [4],

ψ∞out = Jψφ
∞ +Kψψ

∞
in (3.19)

where ψin
∞ and φ∞ have been previously defined, Jψ is a matrix operator constructed

from the elements of Γ with dimensions that are the transpose of the previously defined matrix

operator, Kφ, and Kψ is a square matrix operator (assuming the typical reflective symmetry of

discrete ordinates) constructed from the elements of Γ with a dimension equal to the dimension
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of the vector ψin.

As the construction of each matrix operator can become intractable, it is useful to summa-

rize their definitions, shown in Table 3.1, below.

Table 3.1: Matrix Operator Definitions

Matrix Operator Definition

Jφ The effect of the cell averaged distributed source in each cell

on the cell averaged uncollided scalar flux in all cells

Jψ The effect of the cell averaged distributed source in each cell

on the outgoing angular flux on all external faces

Kφ The effect of the incoming angular flux on each external face

on the cell averaged uncollided scalar flux in all cells

Kψ The effect of the incoming angular flux on each external face

on the outgoing angular flux on all external faces

3.1 Consideration of Anisotropic Scattering

Consideration of anisotropic scattering in equations 3.18 and 3.19 does not alter the equations.

It does, however, significantly alter the contents of the vector φ∞, and therefore the contents

of the matrix operators Kφ, Jψ, and Jφ. A lengthy derivation by Zerr [4], avoided here for

brevity, provides that the scattering source is given by:

qs =

L∑
l=0

l∑
m=0

σsl(2− δm0)[Y
e
lm(Ω̂)ϕml + Y o

lm(Ω̂)ϑml ] (3.20)

In the case of isotropic scattering (i.e. L = 0), it can be seen that the scattering source reduces

to

qs = σs,0φ
o
0 (3.21)

as expected. The formation of the anisotropic scattering source, however, requires significant

alterations to the matrix equation 3.6.

Considering equation 3.20, equation 3.6 becomes [4]
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
σtijk |ξ|/∆zk |η|/∆yj |µ|/∆xi

1 −0.5 0 0

1 0 −0.5 0

1 0 0 −0.5



ψn,i,j,k

ψn,i,j,kout

ψn,i,jout,k

ψn,iout,j,k

 =


Y e
00 Y e

10 2Y e
11 2Y o

11 · · · 2Y o
LL |ξ|/∆zk |η|/∆yj |µ|/∆xi

0 0 0 0 · · · 0 0.5 0 0

0 0 0 0 · · · 0 0 0.5 0

0 0 0 0 · · · 0 0 0 0.5





σs0ϕ
0
0 + qe00

σs1ϕ
0
1 + qe10

σs1ϕ
1
1 + qe11

σs1ϑ
1
1 + qo11
...

σsLϑ
L
L + qoLL

ψn,i,j,kin
ψn,i,jin,k

ψn,iin,j,k



(3.22)

Inverting the left hand side coefficient matrix and left multiplying both both sides by it yields

a new formulation for the matrix, Γ, thus generalizing the Γ matrix to Γanis


ψn,i,j,k

ψn,i,j,kout

ψn,i,jout,k

ψn,iout,j,k

 = Γanis



σs0ϕ
0
0 + qe00

σs1ϕ
0
1 + qe10

σs1ϕ
1
1 + qe11

σs1ϑ
1
1 + qo11
...

σsLϑ
L
L + qoLL

ψn,i,j,kin
ψn,i,jin,k

ψn,iin,j,k



(3.23)

The Γanis matrix has dimensions 4 x ((L+1)2 +3) and is a set of coupling factors between each

angular moment of the scattering plus fixed source, incoming fluxes to the cell, and outgoing face

angular fluxes. The effect of including anisotropic scattering on the dimensions of each matrix

operator and, ultimately, the effect on construction algorithm performance will be examined in

chapter 4.

The DMS algorithm for the construction of the four matrix operators, Jφ, Jψ, Kφ, and , Kψ

was developed by Azmy [16,17] and Zerr [4]. The algorithm developed in this work is intended

to improve upon the DMS by accomplishing two goals: Be more geometrically robust and less
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computationally expensive. In consideration of these goals, this algorithm was developed on

the foundation of the matrix equation 3.6 and 3.23 for isotropic and anisotropic scattering,

respectively.

3.2 The Differential Mesh Sweep (DMS) Algorithm

As mentioned earlier in this chapter, the DMS algorithm is the existing method of constructing

the ITMM matrix operators. For the purpose of comparison to the new algorithm developed

here, a summary of the DMS algorithm for the isotropic scattering case is described in this

section. A much more detailed explanation of the algorithm is provided by Zerr [4]. Zerr’s

description of the algorithm will be used, including naming conventions. As such, it is important

to note Zerr’s naming convention of the Γ matrix from equation 3.6 compared to the naming

convention used in this work from equation 3.7,

Γn =


jφ kφ,z kφ,y kφ,x

jψ,z kψ,z→z kψ,y→z kψ,x→z

jψ,y kψ,z→y kψ,y→y kψ,x→y

jψ,x kψ,z→x kψ,y→x kψ,x→x

 =


γaa γaxy γaxz γayz

γxyz γxyxy γxyxz γxyyz

γxza γxzxy γxzxz γxzyz

γyza γyzxy γyzxz γyzyz

 , (3.24)

where the superscripts are indicative of the relation between the element, the vector to which

it is contributing, and the vector which it is multiplying. For the remainder of this section, this

naming convention for the elements of Γ will be used, while the previous naming convention

will be resumed in the next chapter to the describe the new algorithm.

The beginning of the DMS algorithm is the partial differentiation of equation 3.6 in all cells

(i, j, k) with respect to the previous iterate of the scalar flux in each cell (i′, j′, k′) , resulting in

[4]

∂ψn,i,j,k
∂φpi′,j′,k′

= γaanijkcijk
∂φpi,j,k
∂φpi′,j′,k′

+ γaxynijk

∂ψn,i,j,kin
∂φpi′,j′,k′

+ γaxznijk

∂ψn,i,jin,k
∂φpi′,j′,k′

+ γayznijk

∂ψn,iin,j,k
∂φpi′,j′,k′

(3.25)

and

∂ψn,iout,j,k
∂φpi′,j′,k′

= γyzanijkcijk
∂φpi,j,k
∂φpi′,j′,k′

+ γyzxynijk

∂ψn,i,j,kin
∂φpi′,j′,k′

+ γyzxznijk

∂ψn,i,jin,k
∂φpi′,j′,k′

+ γyzyznijk

∂ψn,iin,j,k
∂φpi′,j′,k′

(3.26)

, AFyz. The elements calculated by equation 3.26 and AFyz are accumulated by the DMS

algorithm into three matrices as the mesh sweep through the sub-domain is occurring: X,

Y , and Z, respectively, such that the elements of these matrices for the adjacent cells to the
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starting cell of the sweep are [4]

X(i+1,j,k)(i′,j′,k′) =
∂ψn,iout,j,k
∂φpi′,j′,k′

, (3.27)

Y(i,j+1,k)(i′,j′,k′) =
∂ψn,i,jout,k
∂φpi′,j′,k′

, (3.28)

and

Z(i,j,k+1)(i′,j′,k′) =
∂ψn,i,j,kout
∂φpi′,j′,k′

. (3.29)

As the DMS continues, the elements of X, Y , and Z are updated as [4]

X(i+1,j,k)(i′,j′,k′) = γyzxynijk Z(i,j,k)(i′,j′,k′) + γyzxznijk Y(i,j,k)(i′,j′,k′) + γyzyznijkX(i,j,k)(i′,j′,k′) , (3.30)

Y(i+1,j,k)(i′,j′,k′) = γxzxynijk Z(i,j,k)(i′,j′,k′) + γxzxznijk Y(i,j,k)(i′,j′,k′) + γxzyznijkX(i,j,k)(i′,j′,k′) , (3.31)

and

Z(i+1,j,k)(i′,j′,k′) = γxyxynijk Z(i,j,k)(i′,j′,k′) + γxyxznijk Y(i,j,k)(i′,j′,k′) + γxyyznijk X(i,j,k)(i′,j′,k′) . (3.32)

Upon completion of the sweep, the terms of equation 3.25 are updated as

∂ψn,i,j,k
∂φpi′,j′,k′

= γayznijkX(i,j,k)(i′,j′,k′) + γaxznijkY(i,j,k)(i′,j′,k′) + γaxynijkZ(i,j,k)(i′,j′,k′) . (3.33)

The elements of X, Y , and Z are then used to update the ITMM matrix operator Jφ using

the quadrature sum from equation 3.3

Jφ(i,j,k)(i′,j′,k′) =
D∑
n=1

wn
∂ψn,i,j,k
∂φpi′,j′,k′

(3.34)

The elements of the ITMM matrix operator Jψ are also calculated using the X, Y , and Z as,

for angular fluxes leaving the sub-domain in the x-direction,

Jψ,n,(i,j,k)(i′,j′,k′) = X(i+1,j,k)(i′,j′,k′), AFyz. (3.35)

As stated in chapter 2, Zerr also developed the algorithm for construction of the ITMM matrix

operators necessary to operate on the incoming angular flux to the sub-domain. To this end,

he created nine additional matrices: XBCX, XBCY , XBCZ, Y BCX, Y BCY , Y BCZ,

ZBCX,ZBCY , andZBCZ. These matrices hold values representing the effect of an entering

angular flux to the sub-domain in the constant face at the beginning of the matrix name (i.e.
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x, y, or z) on the angular flux leaving all cells in the sub-domain out of the constant face at the

end of the matrix name. Considering an angular flux entering the sub-domain in the x-direction

in the primary octant. The values of the appropriate matrices for the adjacent cells to the

incoming angular flux are [4]

XBCX(2,j,k)(1,j,k) = γyzyz(1,j,k) , (3.36)

XBCY(1,j+1,k)(1,j,k) = γxzyz(1,j,k) , (3.37)

and

XBCZ(1,j,k+1)(1,j,k) = γxyyz(1,j,k) . (3.38)

Updated recursively as the sweep continues, these values become

XBCX(i+1,j,k)(1,j′,k′) = γyzyz(i,j,k)XBCX(i,j,k)(1,j′,k′)+

γyzxz(i,j,k)XBCY(i,j,k)(1,j′,k′) + γyzzy(i,j,k)XBCZ(i,j,k)(1,j′,k′) , (3.39)

XBCY(i,j+1,k)(1,j′,k′) = γxzyz(i,j,k)XBCX(i,j,k)(1,j′,k′)+

γxzxz(i,j,k)XBCY(i,j,k)(1,j′,k′) + γxzxy(i,j,k)XBCZ(i,j,k)(1,j′,k′) , (3.40)

and

XBCZ(i,j,k+1)(1,j′,k′) = γxyyz(i,j,k)XBCX(i,j,k)(1,j′,k′)+

γxyxz(i,j,k)XBCY(i,j,k)(1,j′,k′) + γxyxy(i,j,k)XBCZ(i,j,k)(1,j′,k′) . (3.41)

Analogous relations exist for angular flux entering the sub-domain in the y and z directions.

The elements of these nine matrices are then used to create the remaining two ITMM matrix

operators for an angular flux entering sub-domain in the x-direction in the manner [4]

Kφ,n,(i,j,k)(1,j′,k′) = wnγ
ayz
(i,j,k)XBCX(i,j,k)(1,j′,k′)+

wnγ
axz
(i,j,k)XBCY(i,j,k)(1,j′,k′) + wnγ

axy
(i,j,k)XBCZ(i,j,k)(1,j′,k′) (3.42)

and

Kψ,n,(i,j,k)(1,j′,k′) = XBCX(i,j,k)(1,j′,k′) (3.43)

with analogous relations for angular fluxes entering the sub-domain in the y and z directions.

With a summary of the DMS algorithm now provided, the next chapter will describe the new
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algorithm and highlight several differences between the two.
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Chapter 4

The Fundamental Matrix Method

Algorithm

As mentioned previously, the motivation to create a new ITMM matrix operator construction

algorithm was driven by the desire for a less computationally expensive and more geometrically

robust algorithm. With these objectives in mind, consideration of a single cell system and

the associated coupling factors shown in the Γ matrix was an ideal starting point due to its

simplicity.

Beginning with equation 3.6, partial derivatives are taken with respect to each incoming angular

flux component and the cell averaged scalar flux. First, partially differentiating equation 3.6

with respect to the cell averaged scalar flux:

∂ψn,i,j,k

∂φpi,j,k
∂ψn,i,j,kout

∂φpi,j,k
∂ψn,i,jout,k

∂φpi,j,k
∂ψn,iout,j,k

∂φpi,j,k

 =


jφi,j,kci,j,k

jψ,zi,j,kci,j,k

jψ,yi,j,kci,j,k

jψ,xi,j,kci,j,k

 (4.1)

Partially differentiating equation 3.6 with respect to the incoming angular flux in the x direction

yields 
∂ψn,i,j,k

∂ψn,iin,j,k
∂ψn,i,j,kout
∂ψn,iin,j,k
∂ψn,i,jout,k

∂ψn,iin,j,k
∂ψn,iout,j,k

∂ψn,iin,j,k

 =


kφ,xi,j,k
kψ,x→zi,j,k
kψ,x→yi,j,k
kψ,x→xi,j,k

 ,AFyz. (4.2)
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To create a general framework for the response of the angular and scalar flux in one cell of a

domain due to the production and in-leakage at another cell, only the bottom three equations

of matrix equation 4.2 and the analogous equations in the y and z directions are used. As

such, only the mapping of the angular flux from incoming to outgoing faces is being considered.

These equations, however, also only consider a single cell system. To consider an entire domain,

these single cell operators need to be accumulated along every possible path of particles from

the starting to destination cells. This accumulation of values representing the response of the

angular flux on an incoming face of one cell of a domain to the angular flux on the outgoing face

of another cell is termed the fundamental transport matrix and denoted by F . The elements of

F are represented by

Fn(i,j,k)(i′,j′,k′),di,df =
P∑
p=1

M∏
m=1

kψ,d1m,p→d2m,p,n,m,p (4.3)

where p is a possible path from cell i′, j′, k′ to cell i, j, k and di and df are the incident and

emergent constant faces (x, y, or z) of the element of F . The total number of possible paths is

P , a value which depends on the geometry of the domain, and the total number of cells along

each respective path is M . The subscripts of kψ, d1m,p and d2m,p are either x, y, or z depending

on which constant face the particle is incident on and emergent at, respectively, for cell m of

path p. For the first cell of path p, d11,p = di, and for the last cell of path p, d2M,p = df .

kψ,d1m,p→d2m,p,n,m,p is then the value of kψ from face d1 to face d2 in cell m along path p for

the nth discrete ordinate.

Although the FMM algorithm has been completed in three dimensions, figures 4.1 through

4.4, below, show a two dimensional depiction, for visual clarity, of the particle transport repre-

sented by Fn(i,j)(i′,j′),di,df .
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i',j'

i,j

Figure 4.1: Two Dimensional Representation of Fn(i,j)(i′,j′),y,x for an Ordinate in the Primary
Octant
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i',j'

i,j

Figure 4.2: Two Dimensional Representation of Fn(i,j)(i′,j′),y,y for an Ordinate in the Primary
Octant
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i',j'

i,j

Figure 4.3: Two Dimensional Representation of Fn(i,j)(i′,j′),x,x for an Ordinate in the Primary
Octant
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i',j'

i,j

Figure 4.4: Two Dimensional Representation of Fn(i,j)(i′,j′),x,y for an Ordinate in the Primary
Octant

It can be seen from a three dimensional extension of figures 4.1 through 4.4 how the element

Fn(i,j,k)(i′,j′,k′),di,df can then be used to construct each of the four ITMM matrix operators in a

computationally efficient manner by avoiding repeat calculations since it represents the relation

of the outgoing angular flux at any face in a domain to the incoming flux at any other face.

For an angular flux emergent from the face of one cell and incident on the face of another

cell in a three dimensional system, there are nine distinct elements of F resulting from three

possible emergent faces and three possible incident faces. To accumulate values into each ITMM

operator, the only remaining calculation (after the calculation of the appropriate element of F )

is to multiply Fn(i,j,k)(i′,j′,k′),di,df by the respective values it is required to represent for the

emergent and incident cells. Recalling that the emergent cell is i′, j′, k′ and the incident cell

is i, j, k, the respective operators require multiplication of Fn(i,j,k)(i′,j′,k′),di,df by the single cell

operators in the manner shown in Table 4.1.
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Table 4.1: Emergent and Incident Multipliers of Fn(i,j,k)(i′,j′,k′),di,df for Construction of ITMM
Operators

Operator Emergent Cell Multiplier Incident Cell Multiplier

Jφ jψ,di,i′,j′,k′ci′,j′,k′ kφ,df,i,j,k

Jψ jψ,di,i′,j′,k′ci′,j′,k′ kψ,d1→df,i,j,k

Kφ kψ,d1→di,i′,j′,k′ kφ,df,i,j,k

Kψ kψ,d1→di,i′,j′,k′ kψ,d1→df,i,j,k

From equations 3.6 and 3.7, it can be seen how each single cell operator shown in Table 4.1

has a different value based on the direction it is required to represent, hence the necessity of

nine distinct elements of F representing particle transport from the faces of the emergent cell

to the to the faces of the incident cell in a three dimensional system.

The calculation of each element of F may appear to be computationally expensive due to

the sheer number of paths that a particle can travel from an emergent face to an incident

face, especially as the number of intervening cells grows. The FMM algorithm, however, avoids

repeat calculations in the elements of F (just as it avoids repeat calculations for matrix operator

elements by using F ) by recognizing that each path is simply an extension of a previously

traversed path whose F elements have already been computed. A path to a face of an adjacent

cell from a face of a cell for which the element of F has already been calculated only needs

the respective elements of F to be multiplied by the appropriate value of kψ for each adjacent

cell. In this manner, single cell operators, or, more specifically, single cell values of kψ, are

compounded along a path to create an element of F .

Each ITMM operator can then be constructed from elements of F as follows.

The matrix operator Jφ, of dimensions (I x J x K) x (I x J x K)

Jφ =


jφ,1,1,1c1,1,1 · · · jψ,I,J,KcI,J,KFn(1,1,1)(I,J,K)kφ,1,1,1

...
. . .

...

jψ,1,1,1c1,1,1Fn(I,J,K)(1,1,1)kφ,I,J,K · · · jφ,I,J,KcI,J,K

 (4.4)
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where

jψ,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′)kφ,(i,j,k) = jψ,x,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),x,xkφ,x,(i,j,k)+

jψ,x,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),x,ykφ,y,(i,j,k) + jψ,x,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),x,zkφ,z,(i,j,k)+

jψ,y,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),y,xkφ,x,(i,j,k) + jψ,y,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),y,ykφ,y,(i,j,k)+

jψ,y,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),y,zkφ,z,(i,j,k) + jψ,z,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),z,xkφ,x,(i,j,k)+

jψ,z,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),z,ykφ,y,(i,j,k) + jψ,z,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),z,zkφ,z,(i,j,k).

(4.5)

It is important to note that diagonal elements of Jφ do not use an element of F in their

construction. This is because the diagonal elements represent the effect of the cell averaged

distributed source in a cell on the cell averaged scalar flux in the same cell. Since there is no

transport to account for between cells, no element of F is used and the single cell operator jφ

is used instead of jψ on the diagonal elements.

The matrix operator Jψ, of dimensions (D) x 2(IJ + JK + IK) x (I x J x K)

Jψ =



jψ,n,1,1,1c1,1,1Fn(1,1,1)(1,1,1)kψ,n,1,1,1 · · · jψ,n,I,J,KcI,J,KFn(1,1,1)(I,J,K)kψ,n,1,1,1
... · · ·

...

jψ,n,1,1,1c1,1,1Fn(I,J,K)(1,1,1)kψ,n,I,J,K · · · jψ,n,I,J,KcI,J,KFn(I,J,K)(I,J,K)kψ,n,I,J,K
... · · ·

...

jψ,N,1,1,1c1,1,1FN(1,1,1)(1,1,1)kψ,N,1,1,1 · · · jψ,N,I,J,KcI,J,KFN(1,1,1)(I,J,K)kψ,N,1,1,1
... · · ·

...

jψ,N,1,1,1c1,1,1FN(I,J,K)(1,1,1)kψ,N,I,J,K · · · jψ,N,I,J,KcI,J,KFN(I,J,K)(I,J,K)kψ,N,I,J,K


(4.6)

where, if considering the exiting x-face of the final cell and analogously for the exiting y-face

and z-face of the final cell,

jψ,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′)kψ,(i,j,k) = jψ,x,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),x,xkψ,x→x,(i,j,k)+

jψ,x,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),x,ykψ,y→x,(i,j,k)+jψ,x,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),x,zkψ,z→x,(i,j,k)+

jψ,y,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),y,xkψ,x→x,(i,j,k)+jψ,y,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),y,ykψ,y→x,(i,j,k)+

jψ,y,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),y,zkψ,z→x,(i,j,k)+jψ,z,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),z,xkψ,x→x,(i,j,k)+

jψ,z,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),z,ykψ,y→x,(i,j,k)+jψ,z,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),z,zkψ,z→x,(i,j,k).

(4.7)

The matrix operator Kφ, of dimensions transpose of Jψ, (I x J x K) x 2(IJ + JK + IK) x
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(D)

Kφ =



kψ,n,1,1,1Fn(1,1,1)(1,1,1)kφ,n,1,1,1 · · · kψ,n,1,1,1Fn(1,1,1)(I,J,K)kφ,n,1,1,1
... · · ·

...

kψ,n,1,1,1Fn(I,J,K)(1,1,1)kφ,n,I,J,K · · · kψ,n,I,J,KFn(I,J,K)(I,J,K)kφ,n,I,J,K
... · · ·

...

kψ,N,1,1,1FN(1,1,1)(1,1,1)kφ,N,1,1,1 · · · kψ,N,I,J,KFN(1,1,1)(I,J,K)kφ,N,1,1,1
... · · ·

...

kψ,N,1,1,1FN(I,J,K)(1,1,1)kφ,N,I,J,K · · · kψ,N,I,J,KFN(I,J,K)(I,J,K)kφ,N,I,J,K



T

(4.8)

where, if considering the entering x-face of the initial cell and analogously for the entering y-face

and z-face of the initial cell,

kψ,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′)kφ,(i,j,k) = kψ,x→x,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),x,xkφ,x,(i,j,k)+

kψ,x→x,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),x,ykφ,y,(i,j,k) + kψ,x→x,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),x,zkφ,z,(i,j,k)+

kψ,x→y,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),y,xkφ,x,(i,j,k) + kψ,x→y,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),y,ykφ,y,(i,j,k)+

kψ,x→y,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),y,zkφ,z,(i,j,k) + kψ,x→z,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),z,xkφ,x,(i,j,k)+

kψ,x→z,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),z,ykφ,y,(i,j,k) + kψ,x→z,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),z,zkφ,z,(i,j,k). (4.9)

The matrix operator Kψ, of dimensions 2(IJ + JK + IK) x (D) x 2(IJ + JK + IK) x (D)

Kψ =



kψ,n,1,1,1Fn(1,1,1)(1,1,1)kψ,n,1,1,1 · · · kψ,n,1,1,1Fn(1,1,1)(I,J,K)kψ,n,1,1,1
... · · ·

...

kψ,n,1,1,1Fn(I,J,K)(1,1,1)kψ,n,I,J,K · · · kψ,n,I,J,KFn(I,J,K)(I,J,K)kψ,n,I,J,K
... · · ·

...

kψ,N,1,1,1FN(1,1,1)(1,1,1)kψ,N,1,1,1 · · · kψ,N,I,J,KFN(1,1,1)(I,J,K)kψ,N,1,1,1
... · · ·

...

kψ,N,1,1,1FN(I,J,K)(1,1,1)kψ,N,I,J,K · · · kψ,N,I,J,KFN(I,J,K)(I,J,K)kψ,N,I,J,K



T

(4.10)

where, if considering the entering x-face of the initial cell and and the exiting x-face of the final

cell and analogously for the entering y-face and z-face of the initial cell and exiting y-face and
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z-face of the final cell,

kψ,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′)kψ,(i,j,k) = kψ,x→x,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),x,xkψ,x→x,(i,j,k)+

kψ,x→x,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),x,ykψ,y→x,(i,j,k) + kψ,x→x,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),x,zkψ,z→x,(i,j,k)+

kψ,x→y,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),y,xkψ,x→x,(i,j,k) + kψ,x→y,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),y,ykψ,y→x,(i,j,k)+

kψ,x→y,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),y,zkψ,z→x,(i,j,k) + kψ,x→z,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),z,xkψ,x→x,(i,j,k)+

kψ,x→z,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),z,ykψ,y→x,(i,j,k) + kψ,x→z,(i′,j′,k′)Fn(i,j,k)(i′,j′,k′),z,zkψ,z→x,(i,j,k).

(4.11)

In essence, we have consolidated the expensive, recursive calculations required to compute the

four ITMM operators into the computation of Fn(i,j,k)(i′,j′,k′), followed by a straightforward and

computationally cheap pre-fix and post-fix operations indicated in equations 4.4, 4.6, 4.8, and

4.10.

In comparison to the FMM, the DMS, as described in the previous chapter, requires twelve

intermediate matrices in order to populate the four ITMM matrix operators. These are the

three matrices with values representing the outgoing angular flux from every cell in the x,

y, and z directions and the nine matrices representing the effect of incoming angular flux in

each direction on the outgoing angular flux in each direction. These values are then used in

the manner described in the previous chapter to create the four ITMM matrix operators. The

FMM uses only a single intermediate matrix, F , from which all the elements of the four ITMM

matrix operators are created in a relatively simple manner.

The main reason that this difference is important is the time required for memory access. As

each element of F is created, it is promptly operated on to create the corresponding elements of

the four ITMM matrix operators, allowing for the element of F to remain in the memory cache

for the necessary operations and then be discarded without another access. The DMS, however,

creates the necessary twelve intermediate matrices and places them into memory, requiring that

they be accessed at a later time to create the four ITMM matrix operators.

Another advantage of the FMM compared to the DMS is the nature of the mesh sweep. The

DMS uses a single mesh sweep (per angle) to calculate the the required values to populate the

aforementioned twelve matrices. In comparison, the FMM conducts a sweep from each cell of

the mesh to all other cells. While seemingly a disadvantage for the FMM due to the quantity

of sweeps required, the calculations are more simple in nature because only elements of F are

being created in the sweep. The FMM, in this manner, is also more geometrically robust in that

only knowledge of the spatial relation to the adjacent cells is required to create the elements of

F .
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4.1 Example Construction of Elements of F for a 3 x 3 Cell

Domain

In order to demonstrate how the four matrix operators are constructed from single-cell opera-

tors, consider a 3 x 3 cell domain as shown in figure 4.5. For clarity. this illustration employs

a two dimensional domain; however, implementation of the new algorithm and the numerical

tests reported in the following Chapter utilize a three-dimensional Cartesian grid and more

numerous cells than this 3 x 3 example.

  

(1,1) (3,1)(2,1)

(1,2) (3,2)(2,2)

(1,3) (3,3)(2,3)

Figure 4.5: 3 x 3 Cell Domain with Numbered Cells

This example will demonstrate the construction of the ITMM matrix operators in the given

domain with isotropic scattering for a single ordinate, Ω̂n, in the primary octant. Each cell has

its own matrix system of equations with the Γ matrix constructed from the ordinate values and

the total cross section of the material in each cell. The system of equations for Cell (1,1) is,
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with analogous relations for the other cells, ψ(1,1),n

ψ(1,1),n,yout

ψ(1,1),n,xout

 =

 jφ,(1,1) kφ,(1,1),y kφ,(1,1),x

jψ,(1,1),y kψ,(1,1),y→y kψ,(1,1),x→y

jψ,(1,1),x kψ,(1,1),y→x kψ,(1,1),x→x


c(1,1)φ

p
(1,1) + σ−1t,(1,1)q(1,1)

ψ(1,1),n,yin

ψ(1,1),n,xin

 (4.12)

Between adjacent cells, the element of F representing neutron streaming from one cell to the

next is unity because of the physically inspired condition imposing continuity of the angular flux

across cell interfaces. The other (nonzero) elements of F are quantified by tracing the possible

paths through the domain. It is important to distinguish the emergent face and the incident

face because the emergent and incident multipliers will vary based on this distinction.

The following figures show a step-by-step process for calculating the elements of F and each of

the four ITMM operators in the example 3 x 3 domain for an ordinate in the primary octant

and emerging from cell (1,1). The tables following each figure give the value of every element

of F and the four ITMM matrix operators calculated in each step of the FMM algorithm.
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(3,1)(2,1)

(1,2) (3,2)(2,2)

(1,3) (3,3)(2,3)

K
Φ,(1,1)(1,1),y

K
Φ,(1,1)(1,1),x J

Φ(1,1)(1,1)

Cell (1,1)

Incident/Emergent Cell(1,1)

Figure 4.6: Construction Basis of All Four ITMM Operators Resulting from an Angular Flux
Incident on a Face of Cell (1,1) for an Ordinate in the Primary Octant
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Table 4.2: Values of Nonzero Elements of F , Jφ, Kφ, Jψ, and Kψ Resulting from an Angular
Flux Incident on a Face of Cell (1,1) for an Ordinate in the Primary Octant

Elements of F Calculated

Element Value

N/A N/A

Elements of Jφ Calculated

Element Value

Jφ,(1,1)(1,1) jφ,(1,1)c(1,1)

Elements of Kφ Calculated

Element Value

Kφ,(1,1)(1,1),x kφ,(1,1),x

Kφ,(1,1)(1,1),y kφ,(1,1),y

Elements of Jψ Calculated

Element Value

N/A N/A

Elements of Kψ Calculated

Element Value

N/A N/A
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Figure 4.7: Construction Basis of All Four ITMM Operators Resulting from an Angular Flux
Incident on a Face of Cell (1,2) and Emergent from a Face of Cell (1,1) for an Ordinate in the
Primary Octant
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Table 4.3: Values of Nonzero Elements of F , Jφ, Kφ, Jψ, and Kψ Resulting from an Angular
Flux Incident on a Face of Cell (1,2) and Emergent from a Face of Cell (1,1) for an Ordinate
in the Primary Octant

Elements of F Calculated

Element Value

F(1,2)(1,1),y,y 1

Elements of Jφ Calculated

Element Value

Jφ,(1,2)(1,1),y,y jψ,(1,1)c(1,1)F(1,2)(1,1),y,ykφ,(1,2),y

Elements of Kφ Calculated

Element Value

Kφ,(1,2)(1,1),x,y kψ,(1,1),x→yF(1,2)(1,1),y,ykφ,(1,2),y

Kφ,(1,2)(1,1),y,y kψ,(1,1),y→yF(1,2)(1,1),y,ykφ,(1,2),y

Kφ,(1,2)(1,2),x kφ,(1,2),x

Elements of Jψ Calculated

Element Value

N/A N/A

Elements of Kψ Calculated

Element Value

N/A N/A

35



www.manaraa.com

  
(1,1) (3,1)(2,1)

(1,2) (3,2)(2,2)

(1,3) (3,3)(2,3)

K
Φ,(1,3)(1,1),x,y

K
Φ,(1,3)(1,3),x

J
Φ(1,3)(1,1),y,y

Cell (1,3)

F
(1,3)(1,1),y,y

K
Φ,(1,3)(1,1),y,y

K
ψ,(1,3)(1,1),y,y

K
ψ,(1,3)(1,1),x,y

J
ψ,(1,3)(1,1),y,y

Emergent Cell

Incident Cell

Figure 4.8: Construction Basis of All Four ITMM Operators Resulting from an Angular Flux
Incident on a Face of Cell (1,3) and Emergent from a Face of Cell (1,1) for an Ordinate in the
Primary Octant
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Table 4.4: Values of Nonzero Elements of F , Jφ, Kφ, Jψ, and Kψ Resulting from an Angular
Flux Incident on a Face of Cell (1,3) and Emergent from a Face of Cell (1,1) for an Ordinate
in the Primary Octant

Elements of F Calculated

Element Value

F(1,3)(1,1),y,y kψ,(1,2),y→y

Elements of Jφ Calculated

Element Value

Jφ,(1,3)(1,1),y,y jψ,(1,1)c(1,1)F(1,3)(1,1),y,ykφ,(1,3),y

Elements of Kφ Calculated

Element Value

Kφ,(1,3)(1,1),x,y kψ,(1,1),x→yF(1,3)(1,1),y,ykφ,(1,3),y

Kφ,(1,3)(1,1),y,y kψ,(1,1),y→yF(1,3)(1,1),y,ykφ,(1,3),y

Kφ,(1,3)(1,3),x kφ,(1,3),x

Elements of Jψ Calculated

Element Value

Jψ,(1,3)(1,1),y,y jψ,(1,1),yc(1,1)F(1,3)(1,1),y,ykψ,(1,3),y→y

Elements of Kψ Calculated

Element Value

Kψ,(1,3)(1,1),x,y kψ,(1,1),x→yF(1,3)(1,1),y,ykψ,(1,3),y→y

Kψ,(1,3)(1,1),y,y kψ,(1,1),y→yF(1,3)(1,1),y,ykψ,(1,3),y→y
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Figure 4.9: Construction Basis of All Four ITMM Operators Resulting from an Angular Flux
Incident on a Face of Cell (2,1) and Emergent from a Face of Cell (1,1) for an Ordinate in the
Primary Octant
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Table 4.5: Values of Nonzero Elements of F , Jφ, Kφ, Jψ, and Kψ Resulting from an Angular
Flux Incident on a Face of Cell (2,1) and Emergent from a Face of Cell (1,1) for an Ordinate
in the Primary Octant

Elements of F Calculated

Element Value

F(2,1)(1,1),x,x 1

Elements of Jφ Calculated

Element Value

Jφ,(2,1)(1,1),x,x jψ,(1,1),xc(1,1)F(2,1)(1,1),x,xkφ,(2,1),x

Elements of Kφ Calculated

Element Value

Kφ,(2,1)(1,1),x,x kψ,(1,1),x→xF(2,1)(1,1),x,xkφ,(2,1),x

Kφ,(2,1)(1,1),y,x kψ,(1,1),y→xF(2,1)(1,1),x,xkφ,(2,1),x

Kφ,(2,1)(2,1),y kφ,(2,1),y

Elements of Jψ Calculated

Element Value

N/A N/A

Elements of Kψ Calculated

Element Value

N/A N/A
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Figure 4.10: Construction Basis of All Four ITMM Operators Resulting from an Angular Flux
Incident on a Face of Cell (3,1) and Emergent from a Face of Cell (1,1) for an Ordinate in the
Primary Octant
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Table 4.6: Values of Nonzero Elements of F , Jφ, Kφ, Jψ, and Kψ Resulting from an Angular
Flux Incident on a Face of Cell (3,1) and Emergent from a Face of Cell (1,1) for an Ordinate
in the Primary Octant

Elements of F Calculated

Element Value

F(3,1)(1,1),x,x kψ,(2,1),x→x

Elements of Jφ Calculated

Element Value

Jφ,(3,1)(1,1),x,x jψ,(1,1),xc(1,1)F(3,1)(1,1),x,xkφ,(3,1),x

Elements of Kφ Calculated

Element Value

Kφ,(3,1)(1,1),x,x kψ,(1,1),x→xF(3,1)(1,1),x,xkφ,(3,1),x

Kφ,(3,1)(1,1),y,x kψ,(1,1),y→xF(3,1)(1,1),x,xkφ,(3,1),x

Kφ,(3,1)(3,1),y kφ,(3,1),y

Elements of Jψ Calculated

Element Value

Jψ,(3,1)(1,1),x,x jψ,(1,1),xc(1,1)F(3,1)(1,1),x,xkψ,(3,1),x→x

Elements of Kψ Calculated

Element Value

Kψ,(3,1)(1,1),x,x kψ,(1,1),x→xF(3,1)(1,1),x,xkψ,(3,1),x→x

Kψ,(3,1)(1,1),y,x kψ,(1,1),y→xF(3,1)(1,1),x,xkψ,(3,1),x→x
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Figure 4.11: Construction Basis of All Four ITMM Operators Resulting from an Angular Flux
Incident on a Face of Cell (2,2) and Emergent from a Face of Cell (1,1) for an Ordinate in the
Primary Octant
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Table 4.7: Values of Nonzero Elements of F , Jφ, Kφ, Jψ, and Kψ Resulting from an Angular
Flux Incident on a Face of Cell (2,2) and Emergent from a Face of Cell (1,1) for an Ordinate
in the Primary Octant

Elements of F Calculated

Element Value

F(2,2)(1,1),x,y kψ,(2,1),x→y

F(2,2)(1,1),y,x kψ,(1,2),y→x

Elements of Jφ Calculated

Element Value

Jφ,(2,2)(1,1),x,y jψ,(1,1),xc(1,1)F(2,2)(1,1),x,ykφ,(2,2),y

Jφ,(2,2)(1,1),y,x jψ,(1,1),yc(1,1)F(2,2)(1,1),y,xkφ,(2,2),x

Elements of Kφ Calculated

Element Value

Kφ,(2,2)(1,1),x,y kψ,(1,1),x→xF(2,2)(1,1),x,ykφ,(2,2),y

Kφ,(2,2)(1,1),y,y kψ,(1,1),y→xF(2,2)(1,1),x,ykφ,(2,2),y

Kφ,(2,2)(1,1),x,x kψ,(1,1),x→yF(2,2)(1,1),y,xkφ,(2,2),x

Kφ,(2,2)(1,1),y,x kψ,(1,1),y→yF(2,2)(1,1),y,xkφ,(2,2),x

Elements of Jψ Calculated

Element Value

N/A N/A

Elements of Kψ Calculated

Element Value

N/A N/A
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Figure 4.12: Construction Basis of All Four ITMM Operators Resulting from an Angular Flux
Incident on a Face of Cell (2,3) and Emergent from a Face of Cell (1,1) for an Ordinate in the
Primary Octant
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Table 4.8: Values of Nonzero Elements of F , Jφ, Kφ, Jψ, and Kψ Resulting from an Angular
Flux Incident on a Face of Cell (2,3) and Emergent from a Face of Cell (1,1) for an Ordinate
in the Primary Octant

Elements of F Calculated

Element Value

F(2,3)(1,1),x,y F(2,2)(1,1),x,ykψ,(2,2),y→y

F(2,3)(1,1),y,x F(1,3)(1,1),y,ykψ,(1,3),y→x

F(2,3)(1,1),y,y F(2,2)(1,1),y,xkψ,(2,2),x→y

Elements of Jφ Calculated

Element Value

Jφ,(2,3)(1,1),x,y jψ,(1,1),xc(1,1)F(2,3)(1,1),x,ykφ,(2,3),y

Jφ,(2,3)(1,1),y,x jψ,(1,1),yc(1,1)F(2,3)(1,1),y,xkφ,(2,3),x

Jφ,(2,3)(1,1),y,y jψ,(1,1),yc(1,1)F(2,3)(1,1),y,ykφ,(2,3),y

Elements of Kφ Calculated

Element Value

Kφ,(2,3)(1,1),x,y kψ,(1,1),x→xF(2,3)(1,1),x,ykφ,(2,3),y

Kφ,(2,3)(1,1),y,y kψ,(1,1),y→xF(2,3)(1,1),x,ykφ,(2,3),y

Kφ,(2,3)(1,1),x,x kψ,(1,1),x→yF(2,3)(1,1),y,xkφ,(2,3),x

Kφ,(2,3)(1,1),y,x kψ,(1,1),y→yF(2,3)(1,1),y,xkφ,(2,3),x

Elements of Jψ Calculated

Element Value

Jψ,(2,3)(1,1),x,y jψ,(1,1),xc(1,1)F(2,3)(1,1),x,ykψ,(2,3),y→y

Jψ,(2,3)(1,1),y,y jψ,(1,1),yc(1,1)F(2,3)(1,1),y,ykψ,(2,3),y→y + jψ,(1,1),yc(1,1)F(2,3)(1,1),y,xkψ,(2,3),x→y

Elements of Kψ Calculated

Element Value

Kψ,(2,3)(1,1),x,y kψ,(1,1),x→xF(2,3)(1,1),x,ykψ,(2,3),y→y + kψ,(1,1),x→yF(2,3)(1,1),y,ykψ,(2,3),y→y+

kψ,(1,1),x→yF(2,3)(1,1),y,xkψ,(2,3),x→y

Kψ,(2,3)(1,1),y,y kψ,(1,1),y→yF(2,3)(1,1),y,ykψ,(2,3),y→y + kψ,(1,1),y→xF(2,3)(1,1),x,ykψ,(2,3),y→y+

kψ,(1,1),y→yF(2,3)(1,1),y,xkψ,(2,3),x→y
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Figure 4.13: Construction Basis of All Four ITMM Operators Resulting from an Angular Flux
Incident on a Face of Cell (3,2) and Emergent from a Face of Cell (1,1) for an Ordinate in the
Primary Octant
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Table 4.9: Values of Nonzero Elements of F , Jφ, Kφ, Jψ, and Kψ Resulting from an Angular
Flux Incident on a Face of Cell (3,2) and Emergent from a Face of Cell (1,1) for an Ordinate
in the Primary Octant

Elements of F Calculated

Element Value

F(3,2)(1,1),y,x F(2,2)(1,1),y,xkψ,(2,2),x→x

F(3,2)(1,1),x,y F(3,1)(1,1),x,xkψ,(3,1),x→y

F(3,2)(1,1),x,x F(2,2)(1,1),x,ykψ,(2,2),y→x

Elements of Jφ Calculated

Element Value

Jφ,(3,2)(1,1),y,x jψ,(1,1),yc(1,1)F(3,2)(1,1),y,xkφ,(3,2),x

Jφ,(3,2)(1,1),x,y jψ,(1,1),xc(1,1)F(3,2)(1,1),x,ykφ,(3,2),y

Jφ,(3,2)(1,1),x,x jψ,(1,1),xc(1,1)F(3,2)(1,1),x,xkφ,(3,2),y

Elements of Kφ Calculated

Element Value

Kφ,(3,2)(1,1),y,x kψ,(1,1),y→yF(3,2)(1,1),y,xkφ,(3,2),x

Kφ,(3,2)(1,1),x,x kψ,(1,1),x→yF(3,2)(1,1),y,xkφ,(3,2),x

Kφ,(3,2)(1,1),y,y kψ,(1,1),y→xF(3,2)(1,1),x,ykφ,(3,2),y

Kφ,(3,2)(1,1),x,y kψ,(1,1),x→xF(3,2)(1,1),x,ykφ,(3,2),y

Elements of Jψ Calculated

Element Value

Jψ,(3,2)(1,1),y,x jψ,(1,1),yc(1,1)F(3,2)(1,1),y,xkψ,(3,2),x→x

Jψ,(3,2)(1,1),x,x jψ,(1,1),xc(1,1)F(3,2)(1,1),x,xkψ,(3,2),x→x + jψ,(1,1),xc(1,1)F(3,2)(1,1),x,ykψ,(3,2),y→x

Elements of Kψ Calculated

Element Value

Kψ,(3,2)(1,1),y,x kψ,(1,1),y→yF(3,2)(1,1),y,xkψ,(3,2),x→x + kψ,(1,1),y→xF(3,2)(1,1),x,xkψ,(3,2),x→x+

kψ,(1,1),y→xF(3,2)(1,1),x,ykψ,(3,2),y→x

Kψ,(3,2)(1,1),x,x kψ,(1,1),x→xF(3,2)(1,1),x,xkψ,(3,2),x→x + kψ,(1,1),x→yF(3,2)(1,1),y,xkψ,(3,2),x→x+

kψ,(1,1),x→xF(3,2)(1,1),x,ykψ,(3,2),y→x
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Figure 4.14: Construction Basis of All Four ITMM Operators Resulting from an Angular Flux
Incident on a Face of Cell (3,3) and Emergent from a Face of Cell (1,1) for an Ordinate in the
Primary Octant
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Table 4.10: Values of Nonzero Elements of F , Jφ, Kφ, Jψ, and Kψ Resulting from an Angular
Flux Incident on a Face of Cell (3,3) and Emergent from a Face of Cell (1,1) for an Ordinate
in the Primary Octant

Elements of F Calculated

Element Value

F(3,3)(1,1),y,x F(2,3)(1,1),y,xkψ,(2,3),x→x + F(2,3)(1,1),x,ykψ,(2,3),y→x

F(3,3)(1,1),x,y F(3,2)(1,1),x,xkψ,(3,2),x→y + F(3,2)(1,1),x,ykψ,(3,2),y→y

F(3,3)(1,1),y,y F(3,2)(1,1),y,xkψ,(3,2),x→y

F(3,3)(1,1),x,x F(2,3)(1,1),x,ykψ,(2,3),y→x

Elements of Jφ Calculated

Element Value

Jφ,(3,3)(1,1),y,x jψ,(1,1),yc(1,1)F(3,3)(1,1),y,xkφ,(3,3),x

Jφ,(3,3)(1,1),x,y jψ,(1,1),xc(1,1)F(3,3)(1,1),x,ykφ,(3,3),y

Jφ,(3,3)(1,1),y,y jψ,(1,1),yc(1,1)F(3,3)(1,1),y,ykφ,(3,3),y

Jφ,(3,3)(1,1),x,x jψ,(1,1),xc(1,1)F(3,3)(1,1),x,xkφ,(3,3),x

Elements of Kφ Calculated

Element Value

Kφ,(3,3)(1,1),y,x kψ,(1,1),y→yF(3,3)(1,1),y,xkφ,(3,3),x + kψ,(1,1),y→xF(3,3)(1,1),x,xkφ,(3,3),x

Kφ,(3,3)(1,1),y,y kψ,(1,1),y→yF(3,3)(1,1),ykφ,(3,3),y + kψ,(1,1),y→xF(3,3)(1,1),x,ykφ,(3,3),y

Kφ,(3,3)(1,1),x,x kψ,(1,1),x→yF(3,3)(1,1),y,xkφ,(3,3),x + kψ,(1,1),x→xF(3,3)(1,1),x,xkφ,(3,3),x

Kφ,(3,3)(1,1),x,y kψ,(1,1),x→yF(3,3)(1,1),y,ykφ,(3,3),y + kψ,(1,1),x→xF(3,3)(1,1),x,ykφ,(3,3),y

Elements of Jψ Calculated

Element Value

Jψ,(3,3)(1,1),y,x jψ,(1,1),yc(1,1)F(3,3)(1,1),y,xkψ,(3,3),x→x + jψ,(1,1),yc(1,1)F(3,3)(1,1),y,ykψ,(3,3),y→x

Jψ,(3,3)(1,1),y,y jψ,(1,1),yc(1,1)F(3,3)(1,1),y,ykψ,(3,3),y→y + jψ,(1,1),yc(1,1)F(3,3)(1,1),y,xkψ,(3,3),x→y

Jψ,(3,3)(1,1),x,x jψ,(1,1),xc(1,1)F(3,3)(1,1),x,xkψ,(3,3),x→x + jψ,(1,1),xc(1,1)F(3,3)(1,1),x,ykψ,(3,3),y→x

Jψ,(3,3)(1,1),x,y jψ,(1,1),xc(1,1)F(3,3)(1,1),x,ykψ,(3,3),y→y + jψ,(1,1),xc(1,1)F(3,3)(1,1),x,xkψ,(3,3),x→y

Elements of Kψ Calculated

Element Value

Kψ,(3,3)(1,1),y,x kψ,(1,1),y→yF(3,3)(1,1),y,xkψ,(3,3),x→x + kψ,(1,1),y→yF(3,3)(1,1),y,ykψ,(3,3),y→x+

kψ,(1,1),y→xF(3,3)(1,1),x,xkψ,(3,3),x→x + kψ,(1,1),y→xF(3,3)(1,1),x,ykψ,(3,3),y→x

Kψ,(3,3)(1,1),y,y kψ,(1,1),y→yF(3,3)(1,1),y,xkψ,(3,3),x→y + kψ,(1,1),y→yF(3,3)(1,1),y,ykψ,(3,3),y→y+

kψ,(1,1),y→xF(3,3)(1,1),x,xkψ,(3,3),x→y + kψ,(1,1),y→xF(3,3)(1,1),x,ykψ,(3,3),y→y

Kψ,(3,3)(1,1),x,x kψ,(1,1),x→yF(3,3)(1,1),y,xkψ,(3,3),x→x + kψ,(1,1),x→yF(3,3)(1,1),y,ykψ,(3,3),y→x+

kψ,(1,1),x→xF(3,3)(1,1),x,xkψ,(3,3),x→x + kψ,(1,1),x→xF(3,3)(1,1),x,ykψ,(3,3),y→x

Kψ,(3,3)(1,1),x,y kψ,(1,1),x→yF(3,3)(1,1),y,xkψ,(3,3),x→y + kψ,(1,1),x→yF(3,3)(1,1),y,ykψ,(3,3),y→y+

kψ,(1,1),x→xF(3,3)(1,1),x,xkψ,(3,3),x→y + kψ,(1,1),x→xF(3,3)(1,1),x,ykψ,(3,3),y→y
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The previous figures and tables have demonstrated the two-dimensional form of the FMM

algorithm in a step-by-step process. In these tables and figures, it can be seen how elements of F

are used in the calculation of other elements of F in addition to the calculation of each element

of the ITMM operators. In this manner, F allows for the avoidance of repeat calculations in

both the ITMM operators and its own elements.
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Chapter 5

Performance Model and Timing

Results

5.1 Performance Model

It is useful to be able to predict run times as a function of problem parameters, e.g. number of

cells in the domain, for scaling purposes. As such, a performance model has been developed to

serve this purpose. The performance of the construction algorithm in terms of computational

time is dependent upon three variables: The number of cells in the sub-domain, N = I x J x K,

the order of anisotropy, L, and the number of angles, D. The performance model was deter-

mined based on analysis of the operator construction subroutines, particularly the number of

calculations required to build F and each ITMM matrix operator.

The terms of the performance model identified in the analysis of the algorithm are asymptotic

in nature and based on the assumption of a cubic mesh (i.e. I = J = K). For example, for the

total number of cells, N , the number of cells in a single row or column is N1/3 and the number

of cells in a single plane is N2/3.

First, consider the construction of the fundamental matrix F . As previously demonstrated, all

the ITMM operators are constructed through multiplications to elements of F . The perfor-

mance model of the construction of F involves three terms: The construction of elements of F

along a row or a column intersecting the emergent cell (3a1DN
4/3), along planes intersecting

the emergent cell (3a2D(N5/3 −N4/3)), and through the entire sub-domain from the emergent

cell (a3D(N2 − 3N5/3 − 3N4/3)), where ai (i = 1, 2, 3, ...) are measures of the time consumed

in completing a single instance of the corresponding instructions listed above.

As an example of the creation of the performance model terms, the creation of each of the terms

for the performance model of the construction of F will now be described in detail. The first
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term is calculated as the number of possible emergent cells, N , multiplied by the number of

possible incident cells in all rows or columns intersecting the emergent cell, 3N1/3 multiplied

by the number of angles, D. The second term is similarly calculated as the number of possible

emergent cells, N , multiplied by the number of possible incident cells in all planes intersecting

the emergent cell, 3N2/3, multiplied by the number of angles D. The second term also includes

the subtraction of the first term, since those elements of F have already been calculated. The

third term is calculated as the number of possible emergent cells, N , multiplied by the number of

possible incident cells in the entire sub-domain, N , multiplied by the number of angles, D. The

third term also subtracts 3DN5/3 and 3DN4/3 because those elements of F have already been

calculated. These terms are added together to create the performance model for constructing

the fundamental matrix,

tF = 3a1DN
4/3 + 3a2D(N5/3 −N4/3) + a3D(N2 − 3N5/3 − 3N4/3) . (5.1)

The number of calculations for each of the ITMM matrix operators is a function of the number

of cells involved in the operator construction, the number of angles, and the number of angular

moments. The number of angular moments, represented here asH, is calculated byH = (L+1)2.

While the number of calculations for each operator requires a multiplication by D to account

for the number of angles, the use of H differs between the operators. Kψ is the only operator

completely independent of the flux angular moments and, using Table 3.1 as a reference for the

number of cells involved in the calculation, the performance model for Kψ is

tKψ = a4DN
4/3 . (5.2)

Jψ and Kφ both involve the flux angular moments on one end of the calculation. As such, the

number of calculations required for these operators is multiplied by H, resulting in

tJψ+Kφ = a5DN
5/3H . (5.3)

Jφ requires consideration of the flux angular moments in both the emergent cell and the incident

cell. Therefore, the number of calculations is repeated H2 times. In our implementation of the

algorithm, several calculations are conducted in a single loop over all angular moments to

improve computational efficiency. Hence the need for another term multiplied by only H but

the same number of cells, N2. These terms comprise the performance model for the calculation

of Jφ,

tJφ = a6DN
2H + a7DN

2H2 . (5.4)
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The total construction time for the operators is then

ttotal = tF + tKψ + tJψ+Kφ + tJφ . (5.5)

Substituting the previously defined terms results in

ttotal = 3a1DN
4/3 + 3a2D(N5/3 −N4/3) + a3D(N2 − 3N5/3 − 3N4/3)

+ a4DN
4/3 + a5DN

5/3H + a6DN
2H + a7DN

2H2. (5.6)

In order to determine the values of the constants in equation 5.6, timed runs of the code

with varying number of cells, number of angles, and order of anisotropy were conducted.

5.2 Timing Results

The following tables (5.1 for L=0, 5.2 for L=1, 5.3 for L=3) show the measured execution

times of these trials. Each time shown is the average measured execution time across ten runs

of the code. “FMM” designates the Fundamental Matrix Method of constructing the matrix

operators, outlined in this work, and “DMS” designates the Differential Mesh Sweep method

developed by Zerr [4]. As can be seen in each of these tables, the Fundamental Matrix Method

significantly outperforms the Differential Mesh Sweep in all cases. For all timing results shown

here, a 4-core, 3.7 GHz processor was used.

Table 5.1: Matrix Operator Construction Time (s) for L=0 (isotropic)

Method N S4 S8 S12 S16

FMM 64 .0088 .0148 .0268 .0384

DMS 64 .0156 .0356 .0624 .1016

FMM 216 .0416 .0876 .1688 .2768

DMS 216 .0596 .1844 .3820 .6572

FMM 512 .1952 .4764 .9408 1.780

DMS 512 .2468 .8149 1.711 2.925

FMM 1000 .6588 1.507 3.961 6.722

DMS 1000 .8213 2.735 5.651 9.849
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Table 5.2: Matrix Operator Construction Time (s) for L=1

Method N S4 S8 S12 S16

FMM 64 .0140 .0260 .0528 .0868

DMS 64 .0212 .0576 .1116 .1920

FMM 216 .0736 .1892 .4040 .7388

DMS 216 .1296 .4076 .8493 1.467

FMM 512 .4048 1.192 2.871 5.118

DMS 512 .6880 2.273 4.836 8.263

FMM 1000 1.245 4.085 9.172 16.22

DMS 1000 2.242 7.455 15.60 27.04

Table 5.3: Matrix Operator Construction Time (s) for L=3

Method N S4 S8 S12 S16

FMM 64 .0396 .1148 .2528 .4668

DMS 64 .1036 .3704 .6608 1.110

FMM 216 .3136 1.045 2.193 4.332

DMS 216 .5936 1.965 4.078 6.970

FMM 512 1.944 6.961 13.62 28.63

DMS 512 9.815 30.65 66.90 113.7

FMM 1000 7.394 25.01 45.05 79.77

DMS 1000 12.16 40.46 85.16 147.8

In order to determine the values of the model constants of equation 5.6, a Mathematica

fitting function was applied to the timing data for the Fundamental Matrix Method in Tables

5.1 - 5.3. This function uses a least squares algorithm to determine the minimal residual among

all the data points by converging on an optimal value of the constants. This procedure results

in the values shown in Table 5.4 for the constants, applied to equation 5.6. These constant

values are specific to the timing results obtained by the aforementioned processor, and will be

different on another system with different capabilities, although the model, i.e. the functional

dependence on D, N , and H, will remain the same as it characterizes the algorithm itself [19].
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Table 5.4: Least Squares Fit Constant Values for Equation 5.6

Constant Value (sec)

a1 3.259 x 10−10

a2 6.361 x 10−9

a3 2.693 x 10−8

a4 7.411 x 10−10

a5 2.751 x 10−9

a6 5.024 x 10−9

a7 6.813 x 10−10

This is now the complete performance model of the FMM algorithm. Figures 5.1 through 5.3

show the performance model and the measured execution times for L = 0, 1, and 3, respectively,

plotted against the number of cells in the domain, N .
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Figure 5.1: Performance Model (lines) and Measured Matrix Operator Construction Times
(triangles) for L=0 (isotropic scattering)
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Figure 5.2: Performance Model (lines) and Measured Matrix Operator Construction Times
(triangles) for L=1
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Figure 5.3: Performance Model (lines) and Measured Matrix Operator Construction Times
(triangles) for L=3

Discrepancies in the fit of the performance model to the data points can be attributed to

several causes. First among these is the fact that we used the entire data set for the determina-
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tion of the constants. Any data point that could be considered somewhat aberrant can damage

the overall fit and compound errors in conforming to individual data sets. Second would be

the effect on execution time from the frequency of memory cache hits and misses. Each miss

can increase the overall time while each hit can reduce it. Given the sheer number of memory

accesses required for the FMM algorithm, any such problem could cause significant variation in

the data points. The last source of fitting error would be background processes executing on the

system during the timing measurement runs. While each data point is an average of ten code

executions, the averaging does not account for background processes which may slow the per-

formance of the algorithm. Considering these sources of error, the performance model trends, if

not exactly predicts, the execution time of the FMM algorithm. The major error visible in the

plots above is that the model consistently under-predicts the execution time for small N but

becomes highly accurate as N increases. This result is both understandable and expected due

to the asymptotic nature of the performance model, meaning the power dependencies on N are

only valid in the sense N → ∞. In scenarios with a small value of N , the asymptotic nature

can cause a large discrepancy between the model and the measured execution time. This effect

decreases and the model accurately predicts execution times in the asymptotic regime of large

N.

5.3 Memory Requirements

The ITMM is a memory-limited method as the size of the necessary matrix operators grows

significantly with increased size, number of angles, and anisotropic scattering order. Tables 5.5

through 5.8 demonstrate the reasoning for limiting the timing results in the previous section to

the selected values of D, N , and H.
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Table 5.5: Matrix Operator Memory Requirements for L=0

Operator N S4 S8 S12 S16

Jφ 64 33 KB 33 KB 33 KB 33 KB

Jψ/Kφ 64 37 KB 120 KB 260 KB 440 KB

Kψ 64 14 KB 46 KB 97 KB 170 KB

Jφ 216 370 KB 370 KB 370 KB 370 KB

Jψ/Kφ 216 120 KB 410 KB 870 KB 1.4 MB

Kψ 216 47 KB 160 KB 330 KB 560 KB

Jφ 512 2.1 MB 2.1 MB 2.1 MB 2.1 MB

Jψ/Kφ 512 290 KB 980 KB 2.1 MB 3.6 MB

Kψ 512 110 KB 370 KB 770 KB 1.3 MB

Jφ 1000 8.0 MB 8.0 MB 8.0 MB 8.0 MB

Jψ/Kφ 1000 580 KB 1.9 MB 4.0 MB 6.9 MB

Kψ 1000 220 KB 720 KB 1.5 MB 2.6 MB

Table 5.6: Matrix Operator Memory Requirements for L=1

Operator N S4 S8 S12 S16

Jφ 64 520 KB 520 KB 520 KB 520 KB

Jψ/Kφ 64 147 KB 491 KB 1.0 MB 1.8 MB

Kψ 64 14 KB 46 KB 97 KB 170 KB

Jφ 216 6.0 MB 6.0 MB 6.0 MB 6.0 MB

Jψ/Kφ 216 498 KB 1.7 MB 3.5 MB 6.0 MB

Kψ 216 47 KB 160 KB 330 KB 560 KB

Jφ 512 34 MB 34 MB 34 MB 34 MB

Jψ/Kφ 512 1.2 MB 3.9 MB 8.3 MB 14 MB

Kψ 512 110 KB 370 KB 770 KB 1.3 MB

Jφ 1000 130 MB 130 MB 130 MB 130 MB

Jψ/Kφ 1000 2.3 MB 7.7 MB 16 MB 28 MB

Kψ 1000 220 KB 720 KB 1.5 MB 2.6 MB
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Table 5.7: Matrix Operator Memory Requirements for L=3

Operator N S4 S8 S12 S16

Jφ 64 8.4 MB 8.4 MB 8.4 MB 8.4 MB

Jψ/Kφ 64 590 KB 2.0 MB 4.1 MB 7.1 MB

Kψ 64 14 KB 46 KB 97 KB 170 KB

Jφ 216 96 MB 96 MB 96 MB 96 MB

Jψ/Kφ 216 2.0 MB 6.6 MB 14 MB 24 MB

Kψ 216 47 KB 160 KB 330 KB 560 KB

Jφ 512 540 MB 540 MB 540 MB 540 MB

Jψ/Kφ 512 4.7 MB 16 MB 33 MB 57 MB

Kψ 512 110 KB 370 KB 770 KB 1.3 MB

Jφ 1000 2.0 GB 2.0 GB 2.0 GB 2.0 GB

Jψ/Kφ 1000 9.2 MB 31 MB 65 MB 110 MB

Kψ 1000 220 KB 720 KB 1.5 MB 2.6 MB

Table 5.8: Matrix Operator Memory Requirements for L=5

Operator N S4 S8 S12 S16

Jφ 64 42 MB 42 MB 42 MB 42 MB

Jψ/Kφ 64 1.3 MB 4.4 MB 9.3 MB 16 MB

Kψ 64 14 KB 46 KB 97 KB 170 KB

Jφ 216 480 MB 480 MB 480 MB 480 MB

Jψ/Kφ 216 4.5 MB 15 MB 31 MB 54 MB

Kψ 216 47 KB 160 KB 330 KB 560 KB

Jφ 512 2.7 GB 2.7 GB 2.7 GB 2.7 GB

Jψ/Kφ 512 11 MB 35 MB 74 MB 130 MB

Kψ 512 110 KB 370 KB 770 KB 1.3 MB

Jφ 1000 10 GB 10 GB 10 GB 10 GB

Jψ/Kφ 1000 21 MB 69 MB 150 MB 250 MB

Kψ 1000 220 KB 720 KB 1.5 MB 2.6 MB
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Several important properties of the ITMM matrix operators can be seen in tables 5.5 - 5.8.

The most beneficial of these properties to the ITMM memory requirements is that Kψ is not

dependent on the order of anisotropic scattering, only the number of cells and number of an-

gles, and therefore does not have increased memory requirements as the anisotropic scattering

order is increased. Jφ, however, is the limiting ITMM matrix operator in terms of memory

requirements. Jφ is dependent upon the number of cells and the anisotropic scattering order in

the manner (N(L+ 1)2)2. As such, despite the fact that Jφ is not dependent on the number of

angles, as the number of cells and anisotropic scattering order increases, Jφ quickly dominates

the memory requirements of the ITMM and limits the possible size of ITMM sub-domains.

As a result of the properties of Jφ, The timing results shown in this work are limited by the

memory requirements of the ITMM. The size of the matrix operators necessarily grows with

increased size, number of angles, and anisotropic order. This constraint is significant as mem-

ory requirements of the matrix operators quickly exceed system memory limits when any of

these variables are augmented beyond the examples shown in this work (e.g., for a 12x12x12

sub-domain, S16 quadrature, and L = 5, memory requirements exceed 30 GB). Also, previ-

ous parallel Gauss-Seidel applications of the ITMM using a Red/Black coloring scheme have

found that 4x4x4 sub-domains consume the shortest execution times for numbers of processors

exceeding a few hundred [4].
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Chapter 6

Conclusions

The ITMM has been shown to be a competitive solution algorithm to the neutron transport

equation using spatial domain decomposition on massively parallel computational platforms [4].

In the limit of very large number of processors, the speed of the algorithm, and its suitability for

unstructured meshes, i.e. other than an ordered Cartesian grid, is limited by the construction

of four matrix operators required for obtaining the solution in each sub-domain. The existing

algorithm for construction of the four ITMM matrix operators, the DMS, is computationally

expensive and was developed for a structured grid. As such, the motivation for development

of a construction algorithm for the ITMM matrix operators that is both less computationally

expensive and more geometrically robust is evident.

In this work, a new algorithm that provides for faster construction of the ITMM matrix opera-

tors has been described. This algorithm, the FMM, is based on the construction of a single, fun-

damental matrix, F , representing the transport of a particle along every possible path through-

out the sub-domain mesh. Each of the operators is constructed by multiplying an element of

this fundamental matrix by two values dependent only upon the operator being constructed.

The elements of F are face-based, meaning that they represent the transport of a particle along

the aforementioned path from the emergent face of one cell to the incident face of another

cell. By being a face-based quantity, the elements of F can then be used to relate one face to

another face, a face to a cell, or a cell to a cell, dependent on the single cell coupling factors

by which they are multiplied. An example of the FMM algorithm is provided in this work for

a two-dimensional, 3 x 3 sub-domain. The actual implementation and timing reported results,

however, are for three-dimensional geometry and more numerous cells.

It can be seen from the results presented here that the FMM significantly outperforms the DMS

in terms of matrix operator construction time for the ITMM. It should be noted that the time

required for the solution algorithm, which was not detailed in this work, is significantly greater
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than the operator construction time. The FMM gains significance, however, when considering

a calculation requiring multiple energy groups, time steps, or depletion steps, where repeated

evaluations of the ITMM operators must be performed. In this situation, the time savings gained

when using the FMM versus the DMS is multiplied by the number of time steps and/or the

number of groups. As such, the FMM algorithm becomes more critical to the computational

cost of the ITMM as the complexity of the target problem grows [19].

Although the FMM as shown here was developed for a structured Cartesian grid, an advantage

of the FMM is its applicability to an unstructured mesh. The geometric simplicity of the FMM

algorithm lies in that it does not require an orderly mesh sweep, but rather can be applied to

any grouping of cells as long as their spatial relation to each other is known. Although the chal-

lenge of an unstructured tetrahedral mesh is to manage the bookkeeping of how the cells (and

in the planned parallel environment, the sub-domains) fit together, this algorithm has demon-

strated its potential to overcome this challenge of spatial domain decomposition, thus paving

the way for an effective massively parallel method of solving the neutron transport equation on

an unstructured tetrahedral mesh.
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